Reference: IBM Offering Information


The supply chain is experiencing a period of significant change. Changing business and customer requirements are putting new and greater pressures on the business, and emerging technologies are offering intriguing ways of working. Indeed, digital transformation is poised to change the supply chain more profoundly than any other functional area and more dramatically than at any point in its history. In the context of the challenges facing supply chains, both now and into the future, it becomes clear that the old ways of working will not suffice and that even best-in-class performance today is unlikely to be good enough in the future. It is the view of IDC that the supply chain must become a "thinking" supply chain, one that is intimately connected to data sources such as social sentiment and the IoT, enabled with comprehensive and fast analytics, openly collaborative through cloud-based commerce networks, conscious of cyberthreats, and cognitively interwoven. 

Reference: kmworld.com


Forecast Value Added: The Key to Managing the Business Forecasting Process


Business executives want their processes to be effective, efficient, and void of waste. They don't want to squander company time and resources on activities that have no benefit to customers, or to their own bottom line. So when it comes to the business forecasting process, how can they distinguish good performance from bad? How do they know that efforts are "adding value" by making the forecasts more accurate, thereby enabling better service to customers, and making more money?


Business forecasting can be a significant consumer of company resources. There may be forecasting software to license, install, and maintain, and forecast analysts to hire and train to generate the forecasts. There is also, quite commonly, an elaborate consensus or collaborative processes where forecasts are reviewed and adjusted by stakeholders in sales, marketing, finance, operations, or elsewhere. And there can also be a final executive review and signoff, where a general manager or CEO can make final adjustments before "approving" the forecast.


All of this is high-cost management time. We tend to assume these extra reviews and inputs and adjustments are making the forecast better. But the reality is that each human touch points is just one more place that biases and politics and personal agendas can negatively impact forecast accuracy. The unfortunate thing is that our traditional forecasting metrics, by themselves, cannot tell us this.


Traditional forecasting performance metrics, such as Mean Absolute Percent Error (MAPE), tell you the size of your forecast error. But MAPE tells you nothing about what the error should be - what is the best you can expect to do? And MAPE tells you nothing about how efficient you were at achieving the level of forecast accuracy you did attain. Traditional metrics, by themselves, are not enough to properly evaluate and manage forecasting process performance.


Forecast Value Added (FVA) is a forecasting performance metric that has gained wide industry adoption. FVA is defined as "The change in a performance metric that can be attributed to a particular step or participant in the forecasting process." FVA works with whatever traditional metric you use (commonly MAPE, Mean Absolute Deviation, Bias, etc.). FVA is concerned about the change in the metric due to some activity in the forecasting process. Consider an example of a simple forecasting process:


Sales History→Forecasting Model→Statistical Forecast→Analyst Override→Final Forecast


In this process, historical sales information is read into forecasting software, which models the history and generates what we call the "statistical forecast" (i.e., the forecast generated by the software). At that point, the forecast analyst can review and adjust the statistical forecast, resulting in the final forecast.

FVA analysis is the application of basic scientific method to the business forecasting process. Just like the evaluation of a new drug, it involves comparing a treatment (e.g., the new drug, or the statistical forecast) to a placebo. If those patients who take the new drug do better than those who take the placebo, we may conclude that the drug is "adding value" by helping cure their affliction. Similar, if the statistical forecast is more accurate than a "naïve forecast" (described below), then we may conclude that our software and modeling efforts are "adding value" by making the forecast better.


A naïve forecast is something simple to compute, requiring the minimum of effort, and serves as the "placebo" in FVA analysis. For example, using last month's actual sales as the forecast for this month's sales. Such a forecast can be generated at virtually no cost to the organization. So, if our resource consuming forecasting process is not performing any better than the naïve forecast, why bother? Simply use the naïve forecast and free those resources to do more productive activities (or just eliminate those resources that had been used in forecasting).


In conducting FVA analysis, we make this kind of comparison for each sequential step in the forecasting process. In our process example above, we would compare the statistical forecast to a naïve forecast, and also compare the analyst overridden final forecast to the statistical forecast. We might find, for example, that the statistical forecast is better than the naïve forecast (we should certainly hope to find this, given how much we spend on forecasting software!), but that the analyst override just made it worse.


FVA is a tool in the "lean" approach to business management. FVA allows the organization to identify waste - those process steps that are failing to improve the forecast, or may even be making it worse. By eliminating the non-value adding steps or participants from the forecasting process, those resources can be redirected to more productive activities. And by eliminating those steps that are actually making the forecast worse, you can achieve better forecasts with no additional investment.

'SCM Q&A' 카테고리의 다른 글

반도체 제조 프로세스의 이해  (0) 2018.07.27
Solving complex DC-to-store distribution challenges  (0) 2018.04.14
Probability Distribution  (0) 2018.01.30
Demand Sensing  (0) 2018.01.29
Inventory Management  (0) 2018.01.18

Reference: ciokorea.com


1. 범위와 데드라인이 미리 정해진다.

2. 프로젝트 리더와 스폰서는 첫날 결정된다.

3. 팀 멤버가 필요한 능력을 갖추고 있고 잘 협력한다.

4. 프로젝트 스케줄이 현실적이다.

5. 인력을 포함해 모든 리소스를 관리하는 시스템을 갖추고 있다.

6. 프로젝트 디테일, 팀 멤버, 클라이언트는 최신 상태를 유지한다.

7. 팀 멤버가 결정을 내릴 권한을 갖고 있다.

8. 문제를 공개적으로 논의해 개선한다.

'Project Management' 카테고리의 다른 글

Design Sprint and Fast Prototyping  (0) 2018.04.13

Reference: Why GE Digital Failed, Inc.com


'대마불사'라는 말이 있다. 그렇다면 변화 혹은 혁신의 내용이 크고, 예산 및 규모가 클수록 실패할 가능성이 낮은 것일까? 다양한 크기의 프로젝트를 진행해 본 경험에 따르면, 규모나 예산이 클수록 실패할 가능성이 낮은 것이 아니라, 실패하더라도 내부적으로 비난받거나 감사 대상이 될 가능성이 낮다는 표현이 적절한 것 같다. 규모가 크면 관련된 여러 경영층의 합의 내지는 승인을 득해야 하며, 또한 그러한 과제를 통해서 경영층의 업적을 만들어야 하는 암묵적인 목적도 포함하고 있기 때문이다. '대마불사'라는 표현은 다양한 사업을 오랜 기간 동안 지속해온 큰 기업들의 혁신 활동에는 어울리지 않는 표현이다. 오히려 대마불사인양 포장하고 내부적으로는 곪아터질 가능성이 높기 때문이다.


GE의 Digital Transformation 실패 사례는 기업의 혁신 전략을 어떻게 가져가야 하는지 곱씹어 보게 한다. 오랜 경험을 되집어 볼 때, 공감하는 부분들을 인용해 본다.


 True digital transformation is about rethinking your current business model for the 21st century. The process is not just about adding technology to the existing model. Most companies do the latter, because doing the former is extremely difficult.


첨단 기술은 기업의 혁신을 위한 명품 장식품이 아니다. 명품 가방을 구매하는 것만으로 고귀한 품위까지 살 수 없다. 내부적인 변화를 유도하고 기업의 문화까지 점진적으로 바꾸어가는 지속적인 변화 전략이 필요하다. 매년 실적에 목메고 사는 기업 문화에서 10년을 내다보는 Digital Transformation Strategy를 추진하려면 또 다른 지혜가 필요해  보인다.



Digital transformation initiatives don't need thousands of people. They need a small team with very little time and very little money.


작고 강한 혁신 팀으로 시작하기에는 명분이 안서는 것일까? 외국계 파트너사와 IT 업체들을 고용하고 멋진 추진 계획을 세워서 폼나게 시작하는 프로젝트들의 끝이 한 두해 뒤에는 흐지부지되고 경영층 몇 명이 바뀌는 사례가 왜 반복되는 걸까? 혁신은 한치 앞도 보이지 않는 기상 상태에서 에베레스트 산을 오르는 것과 같다. 아무도 가보지 않은 길을 찾기 위해서는 갔다 다시오는 것을 반복하면서 나아가야 한다. 그러기 위해서는 작고 강한 특공대가 필요하다. 사단급의 군대를 이끌고 장기간 출정나갔다가는 잘 못된 길을 가고 있음을 인지하면서도 절벽 끝으로 떠밀려 가는 일이 벌어질 수도 있다. 


Large businesses often struggle with setting up these initiatives correctly because it runs contrary to how they structure sustaining innovations.


Trying to boil the ocean, especially within such a large organization, is a prescription for failure.


크고 멋진 프로젝트의 시작은 '대마불사'라기 보다는 '용두사미'가 되는 경우가 흔하다. 크게 시작하고 상위 경영층에서 여러 부문에 걸쳐 이해관계가 엮이다 보니, 잘 못된 길을 가고 있다는 것을 인지하고서도 멈출 수 없는 경우가 많다. 사단급의 군대를 보내기 전에 작고 강한 특공대를 보내서 길을 틔우는 일을 먼저 해야 한다.



It's important to start small with user acquisition as well. Instead of doing large partnerships with well-established businesses, a new initiative needs to find a value proposition that appeals to small players that are fragmented and bound to grow over time. 


혁신의 책임자가 모든 것을 이해하고 이끌어야 한다. 외부 파트너가 알아서 모든 것을 해주길 바라는 것은 맹인에게 자신의 고급 승용차 운전을 맡기는 것과 같다. 시간이 걸리고 어려움이 많더라도 핵심 팀을 구축하고 모든 것을 이해하면서 해당 기업의 혁신을 이끌어야 한다. 외부 파트너는 예산이 바닥나면 결국 다른 고객을 찾아서 떠나기 때문이다.



A lot of credit is owed to the hard-working team members at GE who had the guts to try something new. Unfortunately, except for a few members of executive leadership, very few of them had the power to influence the setup of GE Digital to make it a success story for digital transformation.


혁신 활동을 시작하면 소위 Sponsor라고 불리는 최고 경영층의 역할은 어때야 할까? 실패하는 혁신 활동에서는 역설적으로 '지적 허영심'으로 무장된 분들이 많았던 것 같다. 혁신 과제의 담당자보다 더 잘 안다고 확신하는 순간 그 프로젝트는 산으로 가기 시작한다. 업무 담당자들이 최고 경영층의 의도와 입맛에 맞게 짜집기된 결과를 만들려고 하기 때문이다. Sponsor의 가장 중요한 임무는 혁신 담당자들이 다양하고 도전적인 실험을 할 수 있도록 보호막이 되어주는 것이다. 그리고 실패하더라도 그 실패를 뒤딤돌 삼아 더 크게 전진하도록 격려해야 한다. 

제약 산업의 공급망 관리 : 사노피(Sanofi Genzyme)의 공급망 혁신 사례

제약 산업의 정부관련 규제 및 오랜 시간이 소요되는 공급망 리드타임 때문에 구매에서 판매 단계까지의 End-to-End Supply Visibility를 혁신 해야 했습니다. 관련하여 수요관리 및 통계예측, 실시간 공급 계획 수립, 유통관리 등 총체적으로 연계된 솔루션을 구축했습니다. 또한 기술적인 부문 이외에도 내부 비지니스 프로세스 혁신과 최고 경영자에 제공하는 Business Analytics 정보도 구축했습니다. 이러한 횡적, 종적 내부 혁신을 위해 연도별로 혁신 로드맵을 수립하여 추진하였습니다.




Reference: SBS CNBC


글로벌 기업들이 헬스케어 산업에 뛰어 들면서 이 산업 분야의 공급망 관리도 한층 더 중요해 질 것으로 전망된다.

Reference: [Top-Notch]55 아마존발 물류 혁명 시작되나?.. "아마존 택배 사업 진출"



아마존의 무인상점 ’아마존 고’에는 센서 퓨전, 딥 러닝 등 아마존의 강력한 인공지능과 빅 데이터 기술이 녹아 있다./사진=아마존

Discrete and Continuous Probability Distribution


Reference : Wikipedia

In probability theory and statistics, a probability distribution is a mathematical function that, stated in simple terms, can be thought of as providing the probabilities of occurrence of different possible outcomes in an experiment. For instance, if the random variable X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 for X = heads, and 0.5 for X = tails (assuming the coin is fair).

In more technical terms, the probability distribution is a description of a random phenomenon in terms of the probabilities of events. Examples of random phenomena can include the results of an experiment or survey. A probability distribution is defined in terms of an underlying sample space, which is the set of all possible outcomesof the random phenomenon being observed. The sample space may be the set of real numbers or a higher-dimensional vector space, or it may be a list of non-numerical values; for example, the sample space of a coin flip would be {heads, tails} .

Probability distributions are generally divided into two classes. A discrete probability distribution (applicable to the scenarios where the set of possible outcomes is discrete, such as a coin toss or a roll of dice) can be encoded by a discrete list of the probabilities of the outcomes, known as a probability mass function. On the other hand, a continuous probability distribution (applicable to the scenarios where the set of possible outcomes can take on values in a continuous range (e.g. real numbers), such as the temperature on a given day) is typically described by probability density functions (with the probability of any individual outcome actually being 0). The normal distribution is a commonly encountered continuous probability distribution. More complex experiments, such as those involving stochastic processes defined in continuous time, may demand the use of more general probability measures.

'SCM Q&A' 카테고리의 다른 글

Solving complex DC-to-store distribution challenges  (0) 2018.04.14
FVA : Forecast Value Added  (0) 2018.02.22
Demand Sensing  (0) 2018.01.29
Inventory Management  (0) 2018.01.18
Fill Rate  (0) 2018.01.18

Demand sensing is a forecasting method that leverages new mathematical techniques and near real-time information to create an accurate forecast of demand, based on the current realities of the supply chain. Gartner, Inc. insight on demand sensing can be found in its report, "Supply Chain Strategy for Manufacturing Leaders: The Handbook for Becoming Demand Driven." [1]

Traditionally, forecasting accuracy was based on time series techniques which create a forecast based on prior sales history and draws on several years of data to provide insights into predictable seasonal patterns. However, past sales are frequently a poor predictor of future sales. Demand sensing is fundamentally different in that it uses a much broader range of demand signals (including current data from the supply chain) and different mathematics to create a more accurate forecast that responds to real-world events such as market shifts, weather changes, natural disasters, consumer buying behavior etc.


Reference: Wikipedia.org

'SCM Q&A' 카테고리의 다른 글

FVA : Forecast Value Added  (0) 2018.02.22
Probability Distribution  (0) 2018.01.30
Inventory Management  (0) 2018.01.18
Fill Rate  (0) 2018.01.18
Two bin inventory management system  (0) 2018.01.17

아마존만의 독특한 창고 관리 방식을 엿볼 수 있습니다.


The shelves look a total mess, but once you understand how it can optimize the routes of the pickers, you will see it make sense.


A lot to learn from Amazon.com: Prime Now



+ Recent posts